Construction of Miniversal Deformations of Lie Algebras
نویسندگان
چکیده
In this paper we consider deformations of finite or infinite dimensional Lie algebras over a field of characteristic 0. By “deformations of a Lie algebra” we mean the (affine algebraic) manifold of all Lie brackets. Consider the quotient of this variety by the action of the group GL. It is well-known (see [Hart]) that in the category of algebraic varieties the quotient by a group action does not always exist. Specifically, there is in general no universal deformation of a Lie algebra L with a commutative algebra base A with the property that for any other deformation of L with base B there exists a unique homomorphism f :B → A that induces an equivalent deformation. If such a homomorphism exists (but not unique), we call the deformation of L with base A versal.
منابع مشابه
Arithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کاملOn the Classification of Moore Algebras and Their Deformations
In this paper we will study deformations of A∞-algebras. We will also answer questions relating to Moore algebras which are one of the simplest nontrivial examples of an A∞-algebra. We will compute the Hochschild cohomology of odd Moore algebras and classify them up to a unital weak equivalence. We will construct miniversal deformations of particular Moore algebras and relate them to the univer...
متن کاملRealization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملDeformations of Lie algebras using σ-derivations
In this article we develop an approach to deformations of the Witt and Virasoro algebras based on σ-derivations. We show that σ-twisted Jacobi type identity holds for generators of such deformations. For the σ-twisted generalization of Lie algebras modeled by this construction, we develop a theory of central extensions. We show that our approach can be used to construct new deformations of Lie ...
متن کاملMassey Products and Deformations
It is common knowledge that the construction of one-parameter deformations of various algebraic structures, like associative algebras or Lie algebras, involves certain conditions on cohomology classes, and that these conditions are usually expressed in terms of Massey products, or rather Massey powers. The cohomology classes considered are those of certain differential graded Lie algebras (DGLA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999